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Abstract

Recent advancements in large-scale models
have been remarkable; however, a significant
challenge persists in their lack of transparency,
particularly concerning the training data uti-
lized. This obscurity raises concerns about po-
tential data leaks and forms a barrier to com-
prehensively understanding the models’ capa-
bilities and limitations, as it remains uncertain
whether these capabilities are attributed to spe-
cific datasets used during training. Addressing
this gap, our study introduces Smoky Quartz, a
transparent bilingual (Chinese-English) model.
We meticulously curated 1.1 trillion tokens of
bilingual data from open-source corpora and
trained a 7B model from scratch. The perfor-
mance of our model on various downstream
tasks is on par with other open-source mod-
els trained on similar data volumes, position-
ing Smoky Quartz as an invaluable asset for
in-depth research and analysis. In a bid to fur-
ther aid research in long-text applications, we
also release a checkpoint capable of handling
128K context lengths, whose context length is
expanded via interpolation. All the data and
training details are disclosed and we anticipate
that Smoky Quartz could contribute to the com-
munity’s understanding of the relation between
LLMs’s performance and training data.

1 Introduction

In the past year, significant advancements have
been made in the field of large language mod-
els (Touvron et al., 2023; OpenAI, 2023; Gemi-
niTeam, 2023), but a persistent concern has been
the lack of transparency, particularly regarding the
training data (Bommasani et al., 2023). Initial mod-
els like ChatGPT were entirely opaque, leaving
users in the dark about their inner workings (Ope-
nAI, 2022). Subsequent open-source models like
LLaMA have somewhat alleviated this issue (Tou-
vron et al., 2023). Currently, open-source models
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like Mistral (Jiang et al., 2023), Baichuan (Yang
et al., 2023), and DeepSeek (DeepSeek, 2023) are
nearing the capabilities of closed-source counter-
parts like GPT-4 (OpenAI, 2023), marking a sig-
nificant success for the open-source community.
However, we observe that these open-source mod-
els, despite revealing their architecture and weights,
fall short in disclosing their training data, a crucial
component of large models.

The lack of data transparency hinders the anal-
ysis and understanding of models. Users are con-
cerned about data leakage and are unable to ac-
curately measure a model’s capabilities through
downstream tasks, as the model might have been
pre-trained on corresponding training or even test
data (Li and Flanigan, 2023). For instance, Sky-
work’s report (Wei et al., 2023) indicated that some
models might have used downstream task data dur-
ing training, resulting in anomalous performances
on general evaluation tasks like MMLU. A more
significant issue is the difficulty in pinpointing the
source of a model’s capabilities or flaws. When
a model solves a challenging problem, we cannot
ascertain whether it has encountered similar issues
during training or has developed specific capabil-
ities to address the problem. Similarly, when a
model exhibits abnormal behavior, it’s challenging
to determine whether this is due to bad cases in
the training data. In essence, without access to the
training data, models remain somewhat opaque to
us, limiting our understanding of them.

To further unveil this black box and assist the
open-source community in better comprehending
the behavior and origins of large model capabili-
ties, we propose a transparent 7B bilingual model,
Smoky Quartz. We utilized a mainstream decoder-
only framework with RoPE (Su et al., 2024) for po-
sitional encoding, aligning with the majority of cur-
rent open-source models. We collected and cleaned
about 1.1T tokens of bilingual corpora, almost all
of which came from open-source datasets. Less



than 10% of the data was additionally collected
by us, and even this portion has open-source alter-
natives available. We will provide detailed infor-
mation on the sources and cleaning recipes of the
training data in this report. Although trained al-
most exclusively on open-source data, our model’s
performance on downstream tasks is comparable
to other open-source models like Baichuan2 (Yang
et al., 2023) and Skywork (Wei et al., 2023) when
trained on a similar volume of data. This indicates
the robustness of our training process and the effi-
cacy of our model, making it a suitable candidate
for analyzing the sources of model capabilities or
defects.

An interesting observation is that our model
outperforms existing open-source models in long-
context tasks, possibly due to our consistent use
of 8K context length from scratch. We have also
open-sourced a checkpoint that can accept 128K
tokens as input, hoping it will be helpful in better
understanding the model’s performance on long
texts and its relationship with the training data."

Our contributions are as follows:

1. We have released a transparent 7B bilingual
model and detailed all the training data, aiding
future research in analyzing the sources of
large model capabilities or defects from a data
perspective.

2. We demonstrated that using nearly only open-
source data can achieve comparable results
to existing mainstream models under similar
data volumes.

3. We provide a detailed process for Chinese data
cleaning, assisting subsequent researchers in
better data handling.

4. We also released a checkpoint capable of
handling 128K context length, facilitating re-
searchers in exploring the origins of long-text
capabilities.

2 Pretraining

2.1 Architecture
Considering the outstanding performance of
LLaMA 2 (Touvron et al., 2023), we choose the
same model architecture as LLaMA to validate
our entire pipeline to train a model from scratch.
Specifically, SmokyQuartz-7B has 32 layers, with
a hidden size of 4096 and 32 attention heads for
each layer. Different from LLaMA 2, our model

has a vocabulary size of 68K, including English,
Chinese, and tokens specifically designed for code.
Additionally, our model is trained with a sequence
length of 8K, instead of 4K.

2.2 Infrastructure

To train our model, we use a cluster of 8 NVIDIA-
A800 nodes, a total of 64 A800-80G SXM GPUs.
Our training framework is based on Megatron-
LM (Shoeybi et al., 2019), which is designed to
support the training of extremely large language
models. We chose it because the efficiency is much
higher than other frameworks, such as Deepspeed.

We use Flash Attention V2 (Dao, 2023) to op-
timize the GPU memory usage and accelerate the
training speed. We find Flash Attention V2 is very
useful when training with long contexts. With the
8K context length, the Flash Attention V2 could
bring about 10% improvements in training speed
compared with the Flash Attention V1 (Dao et al.,
2022).

We adopt pipeline parallel (PP) instead of tensor
parallel or sequence parallel, as the pipeline parallel
methods introduce minimal communication over-
head compared with the other two methods. With
PP=4, we achieve the throughput of 3271 tokens
per GPU per second and a model flop utilization of
44.0%. The whole training process takes about 70
days.

2.3 Data

The diversity and quality of pre-training data are
vital to successful pre-training (Computer, 2023;
Penedo et al., 2023). As the first step of training the
model, we collect a corpus from a wide range of do-
mains and conduct strict filtering and deduplication
to ensure the high quality of the data.

2.3.1 Data Sources

Our pre-training data consists of three parts: En-
glish, code, and Chinese. We describe the data
sources of these parts respectively. The ratio be-
tween English, code and Chinese data is 4.5:0.5:5.

English Data For English, we use the RedPajama
corpus (Computer, 2023), whose domain distribu-
tion is similar to that of LLaMA including Com-
monCrawl, C4, Github, Books, Arxiv, Wikipedia,
and StackExchange. Considering that RedPajama
is already carefully cleaned, we do not apply fur-
ther treatments to it.
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Figure 1: Distribution of the training corpus of Smoky Quartz.
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Figure 2: Illustration of the data cleaning procedure.

Code Data For code, we use the StarCoder
Dataset (Li et al., 2023b), which contains code
in 86 programming languages. We do not use the
split of GitHub issues in the dataset. We remove
the markers of GitHub stars at the beginning of
each file.

Chinese Data For Chinese, we construct a col-
lection of Chinese corpus from multiple public re-
sources. The distribution of our Chinese corpus is
shown in Figure 1. Web data makes up 60% of our
training corpus, where we use Wudao (Yuan et al.,
2021) and the web text split of WanJuan 1.0 (He
et al., 2023). The next largest source is question-
answering (QA) pairs collected from Chinese QA
forums. For news, we mainly use the Chinese News
split of WanJuan 1.0. In terms of encyclopedias,
we use the Chinese articles in Wikipedia and Baidu
Baike. In addition, we use the textbook and exam
splits of WanJuan 1.0, together with a small amount
of in-house books.

2.3.2 Data Cleaning
To further improve the quality of our pre-training
data, we design an effective and efficient pipeline
for data cleaning. The pipeline includes three steps:
filtering by general rules, special treatments to texts
from certain sources, and deduplication of docu-
ments. We show the change in data sizes after each
cleaning step in Figure 2.

In the first step, we adopt a series of heuristic
rules to filter undesired low-quality documents, fol-
lowing Penedo et al. (2023). These rules can com-
prehensively evaluate the quality of a document
from multiple aspects, such as repetition, docu-
ment length, and symbol-to-word ratio. In this
way, we filtered many empty documents, repetitive
texts, advertisements, garbled texts, non-Chinese
documents, etc.

Afterward, we deal with the documents from
certain sources with special treatments. We design
specific rules considering the distinct characteris-
tics of the texts from different sources. For exam-
ple, we fix the format problems in the books, filter
answers with a small number of likes, and remove
the inline advertisements in the web pages.

Finally, we combine multiple deduplication
strategies to avoid substantial overlaps between
documents. We first remove the documents that are
from different sources but share the same URLs.
We then adopt both exact and fuzzy deduplication.
For exact deduplication, we discard the pages with
the same SHA256 hash values. For fuzzy dedupli-
cation, we apply the MinHash algorithm (Broder,
1997): for each page, we compute the minhash
values and measure their approximate similarities
with other pages, removing pairs whose minhash



values are the same in at least one bucket.

2.4 Tokenizer

We tokenize the pre-training data with byte-pair
encoding (BPE) algorithm (Sennrich et al., 2015),
which is implemented by SentencePiece (Kudo and
Richardson, 2018). We train the tokenizer with
texts sampled from our pre-training corpus. Con-
sidering that the number of tokens might affect the
compression rate and the model’s representation
ability across languages, we evenly distribute the
number of Chinese and English tokens. To im-
prove the model performance on math and code
problems, we also additionally train a tokenizer
with the GitHub and arXiv splits of RedPajama
corpus (Computer, 2023). Notably, we then select
a subset of high-frequency tokens from the code
tokenizer and integrate them into the text tokenizer.
Figure 3 illustrates the compression rates under
different quantities of merged code tokens. The
tokenizer of Smoky Quartz has about 68K tokens,
consisting of around 32K English tokens, 32K Chi-
nese tokens, and 4K code tokens.
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Figure 3: The compression rates for GitHub and arXiv
corpus under different quantities of merged code tokens.

To process texts in diverse languages with dis-
tinct characteristics, we introduce the following
constraint rules when designing the tokenizer:

• We split all numbers into individual digits.

• For Chinese tokens, they should not contain
any whitespace characters. For each other
token, either it is composed entirely of whites-
paces, or it should have at most one whites-
pace as a prefix.

• We set the maximum length to 8 for Chinese
tokens, while it is set to 16 for others.

• When training the tokenizer with plain texts,
we remove all tokens containing multiple
punctuation characters. However, when train-
ing the tokenizer with code data, this con-
straint is not enforced.

2.5 Hyperparameter
We use the AdamW (Loshchilov and Hutter, 2017)
to optimize our model, with β1 and β2 are set to 0.9
and 0.95 respectively. The weight decay is set to 0.1
and we clip the grad norm to 1.0. The maximum
learning rate is set to 3e-5 at the beginning but we
reset it to 2e-5 during the training as we found the
learning rate might be too large and the training
loss didn’t decrease. The batch size is set to 4M
tokens. And we use bfloat16 to train our model.

3 Experiments

3.1 Performance on Popular Benchmarks
To assess the capabilities of our model, we con-
duct evaluations on widely used benchmarks, like
MMLU (Hendrycks et al., 2020), CMMLU (Li
et al., 2023a), CEVAL (Huang et al., 2023), and
BBH (Suzgun et al., 2022).

Table 1 showcases the performance of our model
compared to other open-source models, including
their performance on these tasks with a comparable
amount of training data to ours. From the table, we
can draw the following conclusions:

1. When using a similar amount of training
data (approximately 1T tokens), the perfor-
mance of our model is comparable to that of
other open-source models, such as Baichuan2-
7B (Yang et al., 2023) and Skywork-13B (Wei
et al., 2023). This indicates that our training
process is sound and that our current model is
sufficiently powerful to analyze the relation-
ship between model performance and training
data.

2. There are performance gaps between our
model and those trained with larger data sets.
However, we believe that, like Baichuan-7B
and Skywork-13B, our model’s performance
will significantly improve with increased train-
ing, reaching a level comparable to other open-
source models.

3.2 Data Leakage Test
A possible issue in the pre-training of LLMs is
data leakage. To ensure the fairness and objectivity



MMLU
(5-shot)

CMMLU
(5-shot)

CEVAL
(5-shot)

BBH
(3-shot)

Trained with 1T data

LLaMA-7B 35.1 26.8 27.1 32.4
Baichuan-7B 42.3 44.0 42.8 32.5
ChatGLM2-6B 47.9 - 51.7 33.7
Baichuan2-7B (1T) ∼48 ∼49 ∼48 -
Skywork-13B (1T) ∼43 - ∼38 -
Ours-7B-Base 45.2 46.4 44.1 32.3

More Training Data

Baichuan2-7B 54.2 57.1 54.0 41.6
ChatGLM3-6B 61.4 67.5 69.0 66.1
Skywork-13B 62.1 61.8 60.6 -
Yi-7B 63.2 75.5 72.0 42.8

Table 1: Performance of widely used benchmarks with
short input texts. Except for our own, the results of all
the other models are reported in their GitHub projects.
The results of Baichuan2-7B (1T) and Skywork-13B
(1T) are inferred from the figures in their projects.

of the evaluation datasets, we do not specifically
construct data to enhance the model for particular
tasks. Similar to Wei et al. (2023), we evaluate the
language modeling (LM) loss on the samples of
MMLU (Hendrycks et al., 2020) and CMMLU (Li
et al., 2023a).

The results are shown in Table 2. For MMLU
and CMMLU, the losses on the non-test and test
splits are almost identical. Moreover, we find that
the loss on the benchmark-style data is notably
higher than that on our general-domain training
corpus. These results indicate that the benchmarks
are out-of-domain for our model.

MMLU CMMLU

Non-test split 2.12 2.07
Test split 2.15 2.08

General domain 1.95

∆split 0.03 0.01
∆domain 0.17 0.12

Table 2: Average loss of SmokyQuartz-7B on the non-
test and test sets of MMLU and CMMLU. Each sam-
ple for loss calculation is a concatenation of question
and answer. “General domain” denotes the loss on our
general-domain training corpus. ∆split denotes the loss
difference between the non-test split and the test split of
a benchmark. ∆domain denotes the loss difference be-
tween the benchmark and our general-domain training
corpus.

3.3 Long Context Experiments

To adapt to more complex inputs, recent open-
source models have started to accept longer input
lengths, such as ChatGLM3 and Yi. To contribute
to community research on the correlation between
model performance and training data in long-text
scenarios, we also release a checkpoint that can
handle up to 128K in context length. This model
surpasses ChatGLM3 and Yi in the LongBench
benchmark and demonstrates commendable perfor-
mance in a QA task whose input is longer than
100K tokens.

Our model is trained with an 8K context length
from the beginning, which is different from many
other open-source models that are initially trained
with 2K or 4K context lengths and later expanded
to 8K or beyond. To help the model process longer
contexts, we adopt the Adjusted Base Frequency
(ABF) method (Xiong et al., 2023) to further ex-
tend the input length of our model. Specifically, we
modify the frequency base of the position embed-
ding RoPE from 10,000 to 500,000 and continue
training on texts with a context length of 32K to-
kens. During the continual training process, we
adjust the proportion of training data based on the
text length, sampling more long texts like books
and academic papers. Although the model is only
trained with a context length of 32K tokens, we
found that our model demonstrates good extrapo-
lation capabilities, which means our model could
handle inputs with up to 128K tokens. This finding
of good extrapolation of ABF is consistent with
other concurrent works (Liu et al., 2023).

Avg SQA MQA Sum FS Code

Base Models
LLaMA2-7B-4K 17.0 11.9 5.2 0.2 19.8 48.1
Qwen-7B-8K 25.9 14.5 12.6 8.9 30.3 63.2
Baichuan2-7B-4K 26.2 13.3 20.8 9.7 29.3 57.7
Yi-6B-200K 29.3 23.0 13.2 8.5 38.0 63.0
Ours-7B-Base 40.4 50.1 40.0 8.4 38.0 65.8

Chat Models
ChatGLM3-6B-32K 43.1 59.5 42.0 15.7 42.0 56.1
Ours-7B-Chat 43.8 54.9 41.8 16.4 40.1 65.9

Table 3: Performance of different open-source mod-
els on Longbench-ZH, which are reimplemented by
us based on the official code provided by LongBench.
SQA, MQA, SUM and FS represent Single-Document
QA, Multi-Document QA, Summarization, and Few-
Shot respectively. We do not consider the synthetic task
because almost all models are unable to handle this task.

As shown in Table 3, after further extend-



32K-64K 64K-128K

ChatGLM3-6B-32K 2.2 -
Yi-6B-200K 23.0 21.3
Ours-7B-Base 30.6 26.8

Table 4: Peformance on two extremely long subsets
of Narrative-QA whose inputs have 32,000 to 64,000
tokens and 64,000 to 128,000 tokens.

ing the model’s available context length, its per-
formance on LongBench improved significantly.
SmokyQuartz-128K-Base achieves an average
score of 40.4, surpassing Yi-200K, which is also
designed for long texts. Since many tasks in Long-
Bench are in a zero-shot format, it may be chal-
lenging for a base model to follow the task instruc-
tions. Thus, we also train a chat version and we
observe that the SmokyQuartz-128K-Chat outper-
forms ChatGLM3-32K, which is one of the best
models in long text tasks.

Although LongBench is widely used for evaluat-
ing the capability of handling long texts, we notice
that the average length of inputs in LongBench is
actually less than 32,000 tokens. To further explore
the models’ ability to understand extremely long
texts, we select two subsets from Narrative QA,
whose input length is from [32000, 64000] and
[64001, 128000]. Table 4 shows the performance
of SmokyQuartz and other models that perform
well on LongBench. From the table, we can ob-
serve that SmokyQuartz performs best when the
input length is longer than 32,000 tokens, while
Yi-200K can also achieve good performance on
extremely long texts. However, we observe that
ChatGLM3-32K fails in this scenario, although it
is also continually trained with 32,000 tokens. We
speculate that this may be attributed to the better ex-
trapolation capabilities of ABF compared to linear
interpolation adopted by ChatGLM3-32K.

4 Conclusion

In this technique report, we provide a transparent
bilingual large language model, SmokyQuartz. Our
model performs comparably to models trained with
an equivalent amount of data in common bench-
marks such as MMLU and CMMU. Moreover, in
long-text tasks, the performance of our extended
model, SmokyQuartz-128K, even surpasses ex-
isting open-source models like ChatGLM3-32K
and Yi-200K. We have not only made the model’s
weights publicly available, but more importantly,
we have also detailed the data used in training. We

hope our work will assist the community in better
understanding the remarkable capabilities of large
models from a data perspective.
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